Preparation of Methyl 2,3-Anhydro-4,6-O-benzylidene-3-deoxy-3-nitro- β -D-allopyranoside and Some C^2 -Branched-Chain Derivatives of Methyl 4,6-O-Benzylidene-2,3-dideoxy-3-nitro-β-D-glucopyranoside

Tohru Sakakibara, Satoru Kumazawa and Toshio Nakagawa

Department of Chemistry, Tokyo Institute of Technology, Ō-okayama, Meguro-ku, Tokyo (Received May 29, 1970)

In a previous paper1) we reported that new nucleosides (3 and 4) were easily formed on treatment of 3-nitroglucoside 1 with theophylline or 2,6-dichloropurine in the presence of sodium bicarbonate via a two-step mechanism, i.e. (i) elimination of acetic acid from 1 to yield α-nitroolefin 2 and (ii) nucleophilic addition of the purine bases to 2. Recently Newman and Angier²⁾ described αnitroepoxides, a new class of compounds, generated from α-nitroolefins with alkaline hydrogen peroxide.

We have found that on treatment with sodium hypochlorite in THF 2 also gives nitroepoxide 5 as the first member in the field of sugar chemistry. When the solvent was changed from THF to acetone, an unexpected addition of acetone, a very weak nucleophile $(K_a^{3)}$ 10⁻²⁰), to 2 predominantly occurred⁴⁾ and a branched-chain compound 6 was obtained.

In THF (20 ml) 2⁵⁾ (293 mg) was stirred with

- 1 R = OAc
- 3 R = 7-theophyllinyl
- R = 2,6-dichloro-9-purinyl
- $R = CH_2 C CH_3$

 $R = CH(CN)_2$

 $R = CH(CO_2Et)_2$

$$\mathbf{9} \quad \mathbf{R} = \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle - \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle$$

at room temperature. It was then diluted with water (40 ml), condensed in vacuo to a half volume, extracted with chloroform, and on evaporation the remaining material was recrystallized from ethanol/water to give in 74% yield epoxide 5, $C_{14}H_{15}NO_{7}^{6}$ mp 184—185°C, $[\alpha]_{D}^{20}$ –96.2° (c 1, MeOH). When stirred in acetone instead of THF over-

sodium hypochlorite (ca. 20% aq., 1.8 ml) for 2 hr

night at room temperature, 2 gave in 91% yield adduct **6**, C₁₇H₂₁NO₇,⁶) mp 176—177°C (from EtOH), $[\alpha]_{D}^{20} - 66.9^{\circ}$ (c 1, MeOH), IR(KBr) 1715 cm⁻¹ (C=O), NMR(CDCl₃) 7.89 τ (3H-s, Ac).

Similarly, addition of malononitrile $(K_a^{3)}$ 6.5× 10^{-12}) and ethyl malonate (K_a^{33}) 5×10⁻¹⁴) to 2 afforded the following, in an over 88% yield, respectively: 2-C-Dicyanomethyl derivative 7, $C_{17}H_{17}$ - N_3O_6 , 6 mp 177—178°C (from EtOH), $[\alpha]_D^{20}$ -40.2° (c 1, MeOH); 2-C-(Diethoxycarbonyl) methyl derivative 8, C₂₁H₂₇NO₁₀,6) mp 109—110°C (from EtOH), $[\alpha]_{D}^{20}$ -61.2°C (c 1, MeOH).

Under similar conditions cyclohexanone was shown to be inactive as a nucleophile, but its morpholino enamine was made to react with 2 without a catalyzer to afford adduct $\bf 9$ in 76% yield, C_{24} - $H_{32}N_2O_7$,6) mp 145.5—146°C (from EtOH), $[\alpha]_D^{20}$ -135° (c 0.5, CHCl₃).

Structures of the products obtained were deduced from NMR-data: The fact that $J_{1,2}=0$ (dihedral angle of H1,H2=100°) and $J_{4,5}$ =9.5 Hz(diaxial of H⁴,H⁵) in 5 permits only a distorted β-allo structure, as shown in the figure. Large values of coupling constants (≥ 8 Hz) of H¹-H⁵ in 6-9 indicate their β -gluco configurations.

Table 1. 100 MHz NMR Spectra in CDCl₃ (TMS as an internal standard)

Compound	Chemical shifts in τ					Coupling constants			
	H1	H²	H ₃	H4	-CH(O	$J_{1,2}$	$J_{2,3}$	$J_{3,4}$	$J_{4,5}$
5	5.21	6.25		4.98	4.30	0	_		9.5
6	5.30	?	5.00	5.87	4.47	8	10.5	9.5	9.5
7	5.41	7.16	5.12	5.79	4.44	8	10.5	9.5	9.5
8	4.87	7.10	4.97	?	4.46	8	11.5	10	?
9	5.51	?	5.01	5.87	4.48	8	10.5	10.5	9.5

¹⁾ T. Nakagawa, T. Sakakibara and S. Kumazawa, Tetrahedron Lett., 1970, 1645.

have as a basic catalyzer. The reaction proceeds also in the presence of a trace of sodium hydroxide instead of sodium hypochlorite, to give 6 in 86% yield.
5) H. H. Baer and T. Neilson, Can. J. Chem., 43,

²⁾ H. Newman and R. B. Angier, Chem. Commun., **1969**, 369.

Value in water at 25°C [R. G. Pearson and R. L. Dillon, J. Amer. Chem. Soc., 75, 2439 (1953)]. 4) In this case sodium hypochlorite is likely to be-

⁶⁾ All the new compounds give satisfactory results in elementary analyses.

^{840 (1965).}